
Page 1
©1999 Object International, Inc. All rights reserved. www.oi.com

Pink is my favorite crayon.
Aerosmith

1 Archetypes, Color, and the Domain-Neutral
Component

Color profoundly affects how we see the world around us.

Just as the transition from black-and-white photography to color is so
profound, the transition from black-and-white modeling is an awesome one.

Welcome to the world of modeling with archetypes, color, a domain-neutral
component, and a dozen domain-specific compound components.

In this chapter, you'll learn and apply archetypes, color, and the domain-neutral
component. In Chapters 2-5, you'll read and apply domain-specific components. In
Chapter 6, you'll discover feature-driven development, the process for all of this into
best practice.

This book focuses on modeling with color, archetypes, and components—along
with a process for putting it into practice.

How does Java fit in? The model shapes are Java inspired. You'll find
composition rather than inheritance. You'll also see a judicious use of interface
plug-in points—for added flexibility. In addition, the CD includes all of the models
including Java skeleton source code.

We've developed this book as a front-end companion to Java Design. That book
delivers specific strategies for designing with composition, designing with threads,
and designing with notification.

Examples throughout this book use Unified Modeling Language (UML) notation.
Class-diagram notation and some conventions used in this book are shown in
Figure 1-1. Sequence-diagram notation and some conventions used in this book are
shown in Figure 1-2. We suggest you scan those figures now, then refer back to
them from time to time along the way.

1.1 Archetypes
Now let's turn our attention to this chapter's first major topic: archetypes.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 2

0..*

0..1

actual

plan

smaller

larger

1

0..*

aggregation link

1 0..*

link role

association link

0..1

1

0..*

1 0..*

0..1

0..*

0..*

0..1

0..*

0..1

0..1

0..*

plan

actual

0..1

0..*

larger

smaller

Class3

attribute

method

Class2

attribute

method

Usual

cardinalities

for association

and aggregation

links:

0..1 1

0..* 1..*

Class4

attribute

method

Inheritance

link (points

from specialization

to generalization)

interface

Interface1

methodImplements

link (points from

implementer to

interface)

Class5

attribute

method

classMethod

A Class5 object might

hold an Interface1

implementer.

The 0..* cardinality

indicates that a class1

object holds a collection

of some number of

class2 objects.

The 1 cardinality

indicates that a

class2 object holds

exactly one class1

object.

An interface specifies

method signatures; it's

up to an implementer to

implement that method.

Class1

attribute

method

A class with an italicized

name is an abstract class

(a class without objects).

An underlined method

is a static method

(class method), a

method performed by

the class rather than by

the objects in a class.

<<text label, called a stereotype>>

Class6

attribute

method

Class7

attribute

Class8

attribute

method

Association link

from one object

to others in the

same class (with

example "link role"

labels)

Aggregation link

from one object

to others in the

same class (with

example "link role"

labels)

Component
This is a UML package.

Convention: use it as a

component symbol.

...Component.Class9

attribute

method

...Component.Class10

Convention: A clipped class-

symbol indicates the class is

from another component. It lists

attributes and methods when

some of them might be helpful

in understanding the component

you are looking at.

Figure 1-1. Class-diagram notation and conventions.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 3

 aSender

 anObject2

...Class2

 anObject3

...Class3

The box is an object.
Inside: object name,
then class name.

The arrows are messages,
from sender to receiver
(and back again).

The wide bars
are activation bars,
showing when an
object is active.

The vertical dashed lines
are lifelines, indicating
the life of the object
over time.

A sequence begins
with a sender, some
object that invokes
the initial method.

Convention: Use "FOR each"
notes to indicate iteration (rather
than a UML asterisk, limited to
a single message-send).

Convention: Use IF and ELSE
notes for conditions (rather than
UML brackets; need room for
writing the condition).

Time moves
down the page;
message arrows
may travel left to
right or right to left.

A clipped arrowhead
indicates an asynchronous
message.

A message name in single quotes
is a comment; corresponding
class diagram(s) won't include
a corresponding method for it.
Most common use: getters and setters.

Convention: Use notes to list
arguments for messages that
need them (helps keep message-
arrow labels from becoming too long).

This is a self-delegation
message. The object
invokes one of its own

methods.

1: method
2: method

3: method

4: 'getAttribute'

5: method

1: method
2: method

3: method

4: 'getAttribute'

5: method

Figure 1-2. Sequence-diagram notation and conventions.

Here's the concept we want to communicate:
A form or template for one of a small number of class categories. It specifies
attributes, links, methods, plug-in points, and interactions that are typical for
classes in that category.

Which is the better term for this concept?
Stereotype

1. An unvarying model, as though cast from a mold
2. A text tag for annotating a UML diagram element
3. A broad categorization of classes

Archetype
A model from which all things of the same kind more or less follow.”

[Derived from Webster75 and Haykawa68]

"Archetype" says it best.

Yet which archetypes prove most useful in building better models?

We've developed hundreds of models in dozens of business and engineering
domains. Along the way, we continually looked for ways to "abstract up" to a
domain-neutral component – a small model of archetypes that we could apply again
and again in our workshops and mentoring assignments. Why? We felt we could
teach more in less time and accomplish more in less time. Better for our clients,
more interesting for us, win-win.

Over time, we've discovered four interconnected archetypes that form a domain-
neutral component:

- The moment-interval archetype
- The role archetype

Java Modeling in Color with UML
Chapter 1: Introduction

Page 4

- The "catalog-entry-like description" archetype
- The "party, place or thing" archetype.

We'd like to acknowledge that Peter Coad and Mark Mayfield laid the early
groundwork for these four archetypes, first described in [Coad92] and later
extended with David North in [Coad95-97].

1.1.1 The moment-interval archetype
The first archetype in importance is a moment in or interval of time. It

represents something that one needs to work with and track for business or legal
reasons that occurs at a moment in time, or over an interval of time. For short, we
call it a "moment-interval" to help remind us that we are looking for either a
moment or an interval of importance in the problem domain.

A sale is made at a moment in time, the date and time of that sale.

A rental happens over an interval of time, from checkout to check-in. A
reservation occurs over an interval of time, from the time that it is made until the
time it is used, canceled, or expires.

A sale could even be an interval of time, if you track the duration of the sale for
performance assessments.

What's important is that it is one of these two, not which one of the two it is. So
we establish it as one archetype, moment-interval.

1.1.1.1 Using archetypes to identify classes and much more

In any domain, one can look for moment-intervals and begin building a model.
In material-resource management, we can move from request to RFQ to PO to
delivery to invoice. In manufacturing management, we can move from a planned
process and its steps to an actual process and its steps.

So one of the ways that archetypes help in guiding model building is in
identifying classes that need to be included in the model.

Yet archetypes are more than simply a categorization of classes. They are also a
categorization of the responsibilities (the attributes, links, methods, plug-in points,
and interactions) that such classes usually have.

1.1.1.2 Labeling an archetype

What we need is a text tag, so we can indicate which archetype we are applying
when establishing a class. In UML, that text tag is called a stereotype, an extension
mechanism within that notation (Figure 1-3).

<<moment--interval>>

Sale

number

date

calcTotal

Figure 1-3. Using a UML text tag to indicate a moment-interval.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 5

The problem is that text tags like <<moment-interval>> hide some very
important meaning in a rather plain and simple text label. In a family of diagrams,
that little label is lost in the noise as it begins to look like all the other labels. And
that is too bad; expressing the archetype is far more important than it would be
getting credit for. It would be nice if one could give this added layer of information
added punch, so it could:

- Grab your attention to work on that part of the diagram first
- Help you discover a progression of moment-intervals over time
- Guide you in linking other classes into the moment-interval you are

working with
- Quietly move you to considering what is linked to that moment-interval

and how it works with others to get things done.

Expressing archetypes with color is the extra dimension, the added punch that
does all that and more.

1.1.1.3 Implementing archetypes

What does an archetype look like in source code?

An archetype describes a model that classes within that archetype more or less
follow. It's the "more or less" aspect that is important here.

Could we implement an archetype as a superclass and then inherit from it? No!
Here's why. The very nature of an archetype is that each and every class that
follows an archetype only more or less follows it. Inheritance is far too rigid for what
archetypes are all about, what they need to express.

The other way to implement an archetype is by using a keyword-coded
comment, one that modeling tools can recognize and use effectively. In Java, we do
this with a javadoc-style comment, using a coded keyword. For example, here's
such a comment with an embedded keyword (following the @ symbol)"

/** @archetype moment-interval*/
public class Sale {
 public BigDecimal calcTotal(){
 }
 private int number;
 private Date date;
}

That gets the job done nicely.

1.1.2 The role archetype
The second archetype in importance is a role. A role is a way of participation by

a person, place, or thing.

Another way to say this is that a role is a way of participation by a party (person
or organization), place or thing. We like this better, since many times a person or
organization are eligible to play the same role (for example, owner) within a problem
domain that we are working in.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 6

So we model the role-player (a party, place, or thing) as well as the role (the
"hat" that the party, place, or thing is wearing). The role player captures core
attributes and behaviors that apply no matter what combination of hats it might be
wearing. For person, that often includes attributes like legal name and date of
birth. It also includes methods that enforce business rules across the collection of
roles being played, for example, a method "authorized for" that interacts with each
role and applies rules across that collection of roles to determine if it is authorized
to take a given action (Figure 1-4).

<<party->>

Person

legalName

dateOfBirth

authorizedFor

<<role->>

Owner

authorizedFor

<<role->>

Cashier

authorizedFor

Figure 1-4. A party and its roles.

Party, person, and organization roles are the norm. Occasionally you'll find
place and thing roles too (for example, a product and its two roles, "product in a
sales process" and "product in use").

1.1.3 The description archetype
The third archetype is a description. More specifically, it's a catalog-entry-like

description. It is a collection of values that apply again and again. It also provides
behavior across the collection of all things that correspond to its description.

For example, your red pickup is a vehicle; it's a thing with its own serial number
(called a vehicle identification number), purchase date, color, and odometer
reading. The corresponding catalog-entry-like description is vehicle description; it
establishes manufacturer, model number, date of manufacture, and available
colors; it also is a good place to locate business-related methods like, "how many of
these trucks are in good working order?"

1.1.4 The "party, place, or thing" archetype
A party (meaning, a person or an organization), place or thing is someone or

something who plays different roles. A person might be both an employee and a
customer. A place might be both a retail outlet and a wholesale outlet. A thing
might play a role in a manufacturing process and a different role in a purchasing
process.

1.2 Color
Initially, we used textual archetype labels. Yet we found it increasingly difficult

to look at and really see the overall shape of the model including the extra
dimension that those archetypes expressed.

And that's where color came into play.

In September 1997, we started building models with four colors of Post-it™
Notes: pink-yellow-green-blue. Some of those new to model building on the team
commented a number of times long the way, "But how could you have possibly built
effective models in the past without color?" We developed this technique in practice,

Java Modeling in Color with UML
Chapter 1: Introduction

Page 7

published initial findings [Coad97a], and presented this approach in an OOPSLA
'97 tutorial [Coad97b].

As is often the case, practice preceded theory. Seeing these ideas work so well in
practice, we began investigating color and why it appears to have such a profound
effect on building better models.

1.1.1 Why color?
Why use color in component models? Color gives us a way to encode additional

layers of information. The wise use of color increases the amount of content we can
express.

More importantly, one can use color to add layers of new content to models.
Those layers are visible from a distance, so that "big picture" model content comes
across even before one starts reading the details. We call this effect "spatial
layering"; it means that a model is capable of delivering an overview and a detailed
view all within itself, without needing to break visual context by jumping to some
other representation. Color makes spatial layering possible.

"Among the most powerful devices for reducing noise and enriching the content
of displays is the technique of layering and separation, visually stratifying
various aspects of the data." [He then describes how to do this: use
distinctions in shape, lightness, size, and especially color.]

Edward R. Tufte [Tufte90]

Hence, we can use color enrich the content of models. In fact, we can apply
color to achieve four objectives:

"The fundamental uses of color in information design: to label (color as a
noun), to measure (color as a quantity), to represent or imitate reality (color as
a representation), and to enliven or decorate (color as beauty)."

Edward R. Tufte [Tufte90]

What this means to modeling is that we can use color to:
- Label added layers of information (for example, layers of classes with

similar characteristics).
- Indicate the progression of time (for example, one might use different

shades of lightness to show such a progression)
- Represent key categories of information within a model
- Add visual impact to the model.

Added visual impact is important. Modeling is by its very nature a visually
oriented activity. Those with strong spatial intelligence are especially drawn to
model building and model reading.

"Spatial knowledge can serve a variety of scientific ends, a useful tool, an aid
to thinking, a way of capturing information, a way of formulating problems, or
the very means of solving the problem."

Howard Gardner [Gardner83]

"This ability to idealize results, to see through the mess of real-life
observations to what ought to be there, is one of the marks of genius."

Robert Scott Root-Bernstein [Root-Berstein85]

Java Modeling in Color with UML
Chapter 1: Introduction

Page 8

Adding color better engages the spatial intelligence of both model-builders and
model-readers alike.

1.1.2 How many colors?
We started with four colors. Yet how many colors should we be using?

In visual design, it's a good idea to limit the number of colors in a color scheme.
Why? Simply put: it's a good way to increase the likelihood of color harmony within
that color scheme.

"Two or three colors is usually enough; five is too many. Four-color
combinations must be selected with great care: nothing looks worse than too
many colors, particularly when they lack common elements."

Hideaki Chijiiwa [Chijiiwa87]

To support visual modeling in color, the last thing we want to do is end up with
something that is visually distracting. We want to support better design, not
distract from it. Hence, no matter how many semantic variations we might come up
with, using four colors seems like a good place to start.

1.1.3 Which colors?
The three-primary system, first proposed around 1731, defines primary colors

as red, blue, and yellow. It defines secondary colors as orange, green, and violet.

The perceptual-primary system, first proposed by Leonardo da Vinci, defines
primary colors as red, yellow, blue, and green. These are the perceptual primaries,
those colors that do not appear to have any other color in them.

The six-primary system, first proposed in the 1990s, gives equal importance to
red, yellow, green, blue, orange, and violet. The basis for this system is that blue
and yellow don't make green; instead, bits of green impurities within so-called blue
paint and so-called yellow paint makes green. Hence green (and for that matter
orange and violet) deserve to be considered primary colors too. [Wilcox94]

We can mute these colors by adding a little white to them. That makes text
placed on those colors much easier to read. So, for the four archetypes, we can use
pink, pastel yellow, pastel blue, and pastel green. Let's see how!

1.3 The Four Archetypes in Color
Our models always consist of four archetypes: role, moment-interval, thing, and

description.

Let's match up archetypes with colors, to deliver that added impact we’re
looking for.

Moment-intervals tie together a component model. Moment-intervals express
the heart and soul of what that component is all about. In a model, moment-
intervals often encapsulate the most interesting methods. Let's make moment-
intervals pink, the most attention-grabbing of the colors.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 9

Roles played by a party, place, or thing are often the next most important part
of a model. Roles include methods like assess performance or assess value. Let's use
the next most attention grabbing color, yellow.

Things are often the next in line. Things often act as containers for other objects
and usually include methods like assess performance or assess value. Descriptions
are last. Descriptions often include methods like how many are available and
calculate total for quantity. Things might have corresponding descriptions, too.
Hence, green (for thing) followed by blue (for description) best fits the color scheme.
So we finally end up with these assignments (Figure 1-5):

<<description>>

Description

<<role>>

Role
<<moment-interval>>

MomentInterval

<<thing>>

PartyPlaceThing
A party (person or org),
place, or thing

A catalog-entry-like
description

A moment (e.g., Sale) or
an interval (e.g., Rental)
that the system must track
and do something about.

A way of participating
in something

Is it a moment or interval? Pink.
Is it a role played? Yellow.
Is it a catalog-entry-like description? Blue.
Otherwise, it's a party, place, or thing. Green.

Figure 1-5. The four archetypes and their colors.

Each of these four colors corresponds to an archetype's characteristics, the
attributes, links, methods, plug-in points, and interactions that corresponding
classes follow, more or less.

An archetype's characteristics include attributes and links (Figure 1-6). A blue
description knows its type, description, item number, and default value(s). A green
party, place or thing knows its serial number, address, and custom value(s). A
yellow role knows its assigned number and status. A pink moment-interval knows
its number, date (or date-time or interval), its priority, its total, and its status.

A blue links to a green links to a yellow links to a pink. Sometimes we don't
need a green and yellow in the mix, in which case a blue links to a pink.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 10

actual

plan0..1

0..*

plan

actual

1 0..*

0..* 1

1

0..*
<<moment-interval>>

MomentInterval

number

dateOrDateTimeOrInterval

priority

total

status

<<role>>

Role

assignedNumber

status

<<thing>>

PartyPlaceThing

serialNumber

address

customValue

<<description>>

Description

type

description

itemNumber

defaultValue

Not shown:
- Link attributes
- "Class as collection" attributes

Figure 1-6. Archetypes—and their attributes and links.

An archetype's characteristics include methods (Figure 1-7).

A blue description finds an available one and calculates the quantity available
(in both cases, interacting with its corresponding green party, place or thing objects
to do so).

A green party, place, or thing determines if it's currently available (checking
status or interacting with its yellow roles). It gets its custom value or if not present
asks its corresponding blue description for its default value. It also assesses its
value to the business and assesses its performance (in both cases interacting with
its yellow roles).

A yellow role determines if it's available to play its role (might be busy), assesses
its value to the business and assesses its performance, in all three cases by
interacting with its pink moment-intervals.

A pink moment-interval makes one (supports the business process for making
one, that is), adds details (parts), and calculates its total (interacting with its parts
to do so). It recalculates its total (forcing a recalculation, regardless of any
internally buffered value). It accepts messages asking it to complete or cancel the
moment-interval. It also provides behavior across other pink moment-intervals
(designated by the prefix "mi_"): generate next, assess with respect to prior moment-
intervals, assess with respect to subsequent moment-intervals, and compare plan
vs. actual. It also has two (underlined) methods with behavior across all of the
objects in the class: list all of the moment-interval objects and calculate the average
moment-interval (usually average amount, although it could be something like
average weight or average fulfillment time).

Java Modeling in Color with UML
Chapter 1: Introduction

Page 11

<<description>>

Description

findAvailable

calcQtyAvailable

<<role>>

Role

isAvailableInThisRole

assessValueToBusiness

assessPerformance

listMomentIntervals

calcAvgMomentInterval

<<thing>>

PartyPlaceThing

isAvailable

getCustomElseDefaultValue

assessValueToBusiness

assessPerformance

<<moment-interval>>

MomentInterval

makeMomentInterval

addDetail

calcTotal

recalcTotal

complete

cancel

mi_generateNext

mi_assessWRTPrior

mi_assessWRTSubsequent

mi_comparePlanVsActual

listMomentIntervals

calcAvgMomentInterval

Not shown:
- Getters/setters
- Adders/removers

"mi"
indicates a method that interacts
with pink moment-intervals (mi's)

Figure 1-7. Archetypes and their methods.

Note that we follow this basic sequence in naming methods:
- Make (to make the object, including conducting the business process to

get there)
- Object-specific calculations and assessments
- Moment-interval (MI) methods, ones that interact with other pink

objects (we add the "mi" suffix to separate these methods from others in
the list)

- Underlined methods, indicating static (or class) methods, ones that act
across the collection of all of the objects in that class

An archetype's characteristics include plug-in points for adapting the behavior
of an archetype (Figure 1-8). A blue description needs a plug-in point when it has
algorithmically complex behavior and we want the option of plugging in an
alternative behavior at times. A pink moment-interval needs a plug-in point
whenever the business process is complicated enough that we really should design-
in plug-in flexibility to accommodate (anticipated or unanticipated) business
process change over time.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 12

1

0..1

<<thing>>

PartyPlaceThing

interface

<<plug-in point>>

IMakeMomentInteval

makeMomentInterval

<<role>>

Role

interface

<<plug-in point>>

IAlgorithm

invokeAlgorithm

<<moment-interval>>

MomentInterval

makeMomentInterval

<<description>>

Description

defaultAlgorithm

invokePlugInElseDefaultAlgorithm

For example,
IMakeSale

Figure 1-8. Archetypes and their plug-in points.

Figure 1-9 summarizes the attributes, links, methods, and plug-in points of
archetypes. We add interactions later in this chapter.

actual

plan

0..* 1

1 0..*

0..*

1

0..1

0..*

plan

actual

1

0..1

<<thing>>

PartyPlaceThing

serialNumber

address

customValue

isAvailable

getCustomElseDefaultValue

assessValueToBusiness

assessPerformance

<<role>>

Role

assignedNumber

status

isAvailableInThisRole

assessValueToBusiness

assessPerformance

listMomentIntervals

calcAvgMomentInterval

<<moment-interval>>

MomentInterval

number

dateOrDateTimeOrInterval

priority

total

status

makeMomentInterval

addDetail

calcTotal

recalcTotal

complete

cancel

mi_generateNext

mi_assessWRTPrior

mi_assessWRTSubsequent

mi_comparePlanVsActual

listMomentIntervals

calcAvgMomentInterval

<<description>>

Description

type

description

itemNumber

defaultValue

findAvailable

calcQtyAvailable

defaultAlgorithm

invokePlugInElseDefaultAlgorithm

interface

<<plug-in point>>

Interface1

invokeAlgorithm

interface

<<plug-in point>>

Interface2

makeMomentInterval

Figure 1-9. Archetypes—and their attributes, links, methods, and plug-in points.

We usually include plug-in points to complex moment intervals (meaning, one
with parts) and to calculation-intensive blue descriptions.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 13

Another point is worth mentioning here. Often, a pink moment-interval has
parts, called moment-interval details. Think of them as being a little piece of a
moment interval, something it needs to do its job (Figure 1-10).

1

1..*

Often, pink
moment-intervals

have parts,
called mi-details.

<<moment-interval>>

MomentInterval

<<mi-detail>>

MIDetail

qty

calcTotal

Figure 1-10. A pink moment-interval and its details.

A pink moment-interval detail knows its quantity and calculates its total.

1.4 Given a Class, What's the Color, What’s the Archetype?
So given a class name, what archetype or color should you use? Use this

checklist:
1st - Is it a moment in or interval of time, something the system needs to

track for business or for legal reasons? If so, it's a pink moment-
interval.

2nd – Otherwise, is it a role? If so, it's a yellow role.
3rd – Otherwise, is it a catalog-like description, a grouping of values that

you can apply again and again? If so, it's blue description.
4th - Otherwise, it's a party, place or thing. It's a green party, place, or

thing (green is the default; if not pink yellow, or blue, it's green).

We also use white occasionally, for notes, for plug-in points, and for system-
interaction proxies.

1.5 The Domain-Neutral Component
Archetypes in color are very useful little building blocks.

Let's take them a step further.

These four archetypes in color plug into each other in a very repeatable and
predictable way. We call it a "domain-neutral component".

We've built hundreds and hundreds of models. All of them follow this domain-
neutral component model. In Chapters 2-5, you'll find 51 domain-specific
components. All of them follow the domain-neutral component shown in Figure 1-
11.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 14

actual

plan

0..*

0..*

0..1

0..*

0..1

0..*

plan

actual

1 0..*

1

1..*

1

1

0..*

1 0..*

1

0..1

0..1

0..*

10..*

0..1

1

0..1

1

0..*

0..1

10..*

1

0..1

0..*0..*

0..1

10..*

<<moment-interval>>

MomentInterval

number

dateOrDateTimeOrInterval

priority

total

status

makeMomentInterval

addDetail

calcTotal

recalcTotal

complete

cancel

mi_generateNext

mi_assessWRTPrior

mi_assessWRTSubsequent

mi_comparePlanVsActual

listMomentIntervals

calcAvgMomentInterval

<<role>>

PartyRole

assignedNumber

status

isAvailableInThisRole

assessPerformance

assessValueToBusiness

listMomentIntervals

calcAvgMomentInterval

interface

<<plug-in point>>

IMakeMomentInterval

makeMomentInterval

interface

<<plug-in point>>

IAlgorithm3

invokeAlgorithm
<<mi-detail>>

MomentIntervalDetail

qty

calcTotal

<<moment-interval>>

SubsequentMomentInterval
<<moment-interval>>

PrecedingMomentInterval

<<party>>

Party

serialNumber

name

address

customValue

assessValueToBusiness

<<description>>

ThingDescription

type

description

itemNumber

defaultValue

findAvailable

calcTotalForQty

invokePlugInElseDefaultAlgorithm

defaultAlgorithm

<<place>>

Place

serialNumber

name

address

customValue

isAvailable

getCustomElseDefaultValue

assessPerformance

assessValueToBusiness

<<role>>

PlaceRole

assignedNumber

status

isAvailableInThisRole

assessPerformance

assessValueToBusiness

listMomentIntervals

calcAvgMomentInterval

<<description>>

PlaceDescription

type

description

itemNumber

defaultValue

findAvailable

calcQtyAvailable

invokePlugInElseDefaultAlgorithm

defaultAlgorithm

<<thing>>

Thing

serialNumber

name

address

customValue

isAvailable

getCustomElseDefaultValue

assessValueToBusiness

assessPerformance

<<role>>

ThingRole

assignedNumber

status

isAvailableInThisRole

assessPerformance

assessValueToBusiness

listMomentIntervals

calcAvgMomentInterval

<<description>>

PartyDescription

type

description

itemNumber

defaultValue

findAvailable

calcQtyAvailable

invokePlugInElseDefaultAlgorithm

defaultAlgorithm

interface

<<plug-in point>>

IAlgorithm2

invokeAlgorithm

interface

<<plug-in point>>

IAlgorithm1

invokeAlgorithm

If just a type attribute,

move the attribute to a green

and zap the blue.

If just one yellow for a green:

keep the partitioning if useful,

else zap yellow and keep green.

If a moment-interval has no parts or steps:

connect the links to the moment-interval itself

and zap this class.

If you do not need

to track a specific

green, then zap

green and yellow;

blue is enough.
Interacts

with its pink

moment-intervals

INTERACTS

- across its collection of related moment-intervals

- across its collection of moment-interval details.

Interacts

with its

yellow roles

INTERACTS with its thing-role description or

with its collection of thing roles.

Sometimes a blue describes a yellow;

if so, link it that way.

Interacts

with its

green parties

Figure 1-11. The domain-neutral component.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 15

1.6 Interactions within the Domain-Neutral Component
This section focuses on archetype interactions within the domain-neutral

component.

Some refer to class diagrams as static and sequence diagrams as dynamic.
Actually, neither diagram moves! It takes some imagination, some additional
internal visualization, to see the motion.

Class diagrams are implicitly dynamic. (It takes a bit of imagination to see the
interactions although one can really learn to see them!) Sequence diagrams are
explicitly dynamic (well, as good as it gets without having on-screen simulations in
front of you).

Archetypes include typical interactions too. Once you know those interactions,
even class diagrams spring to life.

Now rest assured, this is not an excuse for not including sequence diagrams in
this book! Actually, you will find more sequence diagrams than class diagrams in
here.

We feel compelled to make this added point though, that with archetype
interactions you really can learn to look at a class diagram and visualize its most
important interactions.

So let's look at how to do this. First, how to visualize an association in three-
dimensions. Then, how to visualize message-sends within that new dimension. And
finally, walk through a series of class diagram and sequence diagram pairs, so you
can begin to visualize those interactions for yourself.

Here we go.

Consider an association with a 0..* marking on one end (Figure 1-12).

Figure 1-12. An association link.

Already, the class diagram is asking us to visualize beyond what it explicitly
represents. An object on the left side links to some number of objects on the right
side. Visually, you should translate it to something like this, in your mind (Figure
1-13):

Figure 1-13. How to visualize that link, spatially.

Again, the class diagram is asking us to see beyond what is explicitly
represented. The object on the left interacts with the objects on the right, by
sending messages to each one. Here's how to visualize the implicit dynamics of an
association link (Figure 1-14):

Java Modeling in Color with UML
Chapter 1: Introduction

Page 16

Figure 1-14. How to visualize that link, dynamically.

Thankfully, sequence diagrams are explicitly dynamic, giving added visual clues
about the sequence of interactions inherent within a class diagram.

Here are the archetypal interactions for the domain-neutral component—and
indeed the archetypal interactions for all components in this book (Figures 1-15 to
1-20).

Figure 1-15a. Assess value to business: implicit dynamics.

 aMomentInterval

...MomentInterval

 aRole

...PartyRole

 aMomentIntervalDetail

...MomentIntervalDetail

 aThingRoleDescription

...ThingDescription

 aSender

FOR each
moment-interval

FOR each
moment-interval
detail

calcTotalForQty(qty)

3: calcTotal

2: calcTotal

4: calcTotalForQty

1: assessValueToBusiness

3: calcTotal

2: calcTotal

4: calcTotalForQty

1: assessValueToBusiness

Figure 1-15b. Assess value to business: explicit dynamics.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 17

Figure 1-16a. Make moment-interval: implicit dynamics.

 aSender

 aMomentInterval

...MomentInterval

 aSequencer

...IMakeMomentInterval

Include the moment-interval
itself as an argument:

makeMomentInterval(moment-interval)

A message name in single quotes
is a comment; corresponding

class diagram(s) won't include
a corresponding method for it.

Most common use: getters and setters.

1: makeMomentInterval

2: makeMomentInterval

3: 'stepByStep...'

1: makeMomentInterval

2: makeMomentInterval

3: 'stepByStep...'

Figure 1-16b. Make moment-interval: explicit dynamics.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 18

Figure 1-17a. Assess with respect to a subsequent moment-interval: implicit dynamics.

 aMomentInterval

...MomentInterval

 aSubsequentMomentInterval

...SubsequentMomentInterval

 aSender

FOR each
subsequent
moment-interval

2: calcTotal

1: calcTotal

2: calcTotal

1: calcTotal

Figure 1-17b. Assess with respect to a subsequent moment-interval: explicit dynamics.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 19

Figure 1-18a. Get custom else default: implicit dynamics.

 aSender

 aDescription

...ThingDescription

IF it has a
custom value,
use it

OTHERWISE
use the default
value instead

 aThing

...Thing

1: getCustomElseDefaultValue

2: 'getCustomValue'

3: 'getDefaultValue'

1: getCustomElseDefaultValue

2: 'getCustomValue'

3: 'getDefaultValue'

Figure 1-18b. Get custom else default: explicit dynamics.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 20

Figure 1-19a. Find available: implicit dynamics.

 aSender

 aDescription

...ThingDescription

 aRole

...ThingRole

FOR each
thing

 aThing

...Thing

FOR each

role

1: findAvailable

2: isAvailable

3: isAvailableInThisRole

1: findAvailable

2: isAvailable

3: isAvailableInThisRole

Figure 1-19b. Find available: explicit dynamics.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 21

Figure 1-20a. Invoke plug-in else default: implicit dynamics.

 aSender

 aDescription

...ThingDescription

 anAlgorithm

...IAlgorithm3

IF there is

a plug-in,
use it

ELSE
use the default
algorithm

Include the
thing description
as an argument

1: invokePlugInElseDefaultAlgorithm

2: invokeAlgorithm

3: defaultAlgorithm

1: invokePlugInElseDefaultAlgorithm

2: invokeAlgorithm

3: defaultAlgorithm

Figure 1-20b. Invoke plug-in else default: explicit dynamics.

1.7 Component Connectivity
On printed circuit boards, some components directly connect (that is to say,

they are hardwired). Others components plug in. Why not make every element
something you can plug-in? Sockets everywhere! Well, the reason why is that it's
simply not cost-effective to do so.

The same is true with software components. Some are hardwired. Although we
could have plug-in points everywhere, it's not cost-effective to do so. So we choose
and design-in plug-in points at those places where we need and can afford to
implement added flexibility.

The rest of this section moves into a level of detail that you might wish to skip
for now and come back to at another time. Yet for those with inquiring minds that
want to know, here are the details behind component connectivity.

A "direct connect" links an object in one component with objects in another
component (Figure 1-21).

Java Modeling in Color with UML
Chapter 1: Introduction

Page 22

0..*0..*

Shipment

Shipment

<<moment-interval>>

Shipment

assessTimeliness

wasShippedBeforeDueDate

Hardwired component connections:

each component direct-connects,
specifying the classes of objects it
connects to.

ProductSale

ProductSale

<<moment-interval>>

ProductSale

assessTimelinessOfShipments

doesDateMeetDueDate

Figure 1-21. Direct connectivity.

A product-sale object holds a collection of some number of shipments. And a
shipment holds a collection of some number of product sales.

We can ask a product sale to assess the timeliness of its shipments; it interacts
directly with its shipment objects (Figure 1-22).

 aSender

 aProductSale

...ProductSale

 aShipment

...Shipment

FOR each

shipment

1: assessTimelinessOfShipments

2: assessTimeliness

1: assessTimelinessOfShipments

2: assessTimeliness

Figure 1-22. Direct connectivity: a product sale interacts with its shipments.

And we can ask a shipment if it was shipped before the due dates for its
corresponding product sales; it interacts directly with its product-sale objects
(Figure 1-23):

 aSender

 aShipment

...Shipment

 aProductSale

...ProductSale

FOR each
product
sale

1: wasShippedBeforeDueDate

2: doesDateMeetDuedate

1: wasShippedBeforeDueDate

2: doesDateMeetDuedate

Figure 1-23. Direct connectivity: a shipment interacts with its product sales.

Now consider plug-in connectivity. An object interacts with whatever is plugged
into a plug-in point (Figure 1-24).

Java Modeling in Color with UML
Chapter 1: Introduction

Page 23

0..*

0..*

Plug-in component connections:
each component has plug-in points,

eliminating needing to know the class(es)
of objects it might connect to.

<<moment-interval>>

Shipment

assessTimeliness

wasShippedBeforeDueDate

interface

<<plug-in point>>

IShipment

assessTimeliness

Shipment

Shipment

IShipment

ProductSale

ProductSale

IProductSale

<<moment-interval>>

ProductSale

assessTimelinessOfIShipments

doesDateMeetDuedate

interface

<<plug-in point>>

IProductSale

doesDateMeetDuedate

Figure 1-24. Plug-in connectivity.

A product sale holds a collection of objects from classes that implement the
IShipment interface. A shipment holds a collection of objects from classes that
implement the IProductSale interface. It really does not matter which classes the
connecting objects are in, only that the interface must be implemented.

We can ask a product sale to assess the timeliness of its shipments; it interacts
with its IShipment implementers, whatever is plugged into that plug-in point
(Figure 1-25).

 aSender

 aProductSale

...ProductSale

 implementer of IShipment

...IShipment

FOR each
IShipment

1: assessTimelinessOfShipments

2: assessTimeliness

1: assessTimelinessOfShipments

2: assessTimeliness

Figure 1-25. Plug-in connectivity: a product sale and its shipments.

And we can ask a shipment if it was shipped before the due dates for its
corresponding product sales; it interacts with its IProductSale implementers,
whatever is plugged into that plug-in point (Figure 1-26).

Java Modeling in Color with UML
Chapter 1: Introduction

Page 24

 aSender

 aShipment

...Shipment

 implementer of

...IProductSale

FOR each
product
sale

1: wasShippedBeforeDueDate

2: doesDateMeetDuedate

1: wasShippedBeforeDueDate

2: doesDateMeetDuedate

Figure 1-26. Plug-in connectivity: a shipment and its product sales.

For modeling simplicity, we build models with direct connections (like wire
wrap, to extend the circuit-board analogy a bit further). Then we choose where we
want flexibility and add plug-in connectivity (like deciding where we want sockets
on a circuit board; it's a decision in adding flexibility).

1.8 Twelve Compound Components
What if you had a substantial collection of enterprise-component models? Each

component would define a fundamental model shape for supporting some aspect of
your business. Each component would establish the most common responsibilities
for the classes and interfaces to support some aspect of your business. Each
component would define the plug-in points for extending capabilities. In addition,
each component would give your modeling team something more than a blank
whiteboard blank screen for getting started in building a model for your application
or family of applications.

That is what this book delivers.

These components are ready to use and reuse as you see fit. You can put them
to work in a number of ways, for example:

- Use as-is.
- Extend a component by plugging-in new capabilities at the plug-in

points.
- Extend by adding additional content
- Use as a cross-check, an outside opinion, one that you can compare

and contrast with your own on-going work.

The twelve compound components are shown in Figure 1-27.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 25

InventoryMgmt

ManufacturingMgmt

RelationshipMgmt

ProjectActivityMgmt

AccountingMgmt

HumanResourceMgmt

CashSaleMgmt

MaterialResourceMgmt

DocumentMgmt

Make or Buy... Sell... Relate... Coordinate
and Support...

CustomerAccountMgmt

FacilityMgmt

ProductSaleMgmt

Figure 1-27. The twelve compound components.

1.9 Suggested Reading Paths
You might choose to read this book in any number of ways.

If you are interested in a sampling of interesting compound components, read the
first major section of each chapter (that is to say, 2.1, 3.1, 4.1, and 5.1).

If you are interested in a top-down understanding of the components, begin with
project-activity management and then to its subordinates: material-resource
management, facility management, manufacturing management, inventory
management, and human-resource management. Then scan the others.

If you are interested in learning specific modeling tips, begin by scanning the
modeling-tips appendix. Then carefully study Chapter 2. Finally, scan Chapters 3-5
for additional tips. (We present each tip right after we've shown its application by
example. Once we present a tip, we do not repeat it in subsequent material. So
Chapter 2 has the most tips.)

If you are interested in the domain-neutral component and its steady application
across 51 components, copy the domain-neutral component with four colors of Post-
it Notes and then study the class-diagram shapes in Chapters 2-5, looking at
what's the same and what's different, observing the little things along the way.

If you are interested in templates, plans, and plan executions, study
manufacturing management and then activity management.

If you are interested in material resources that eventually become products and
how the two interrelate and interact, read material-resource management, then
product-sale management, and then inventory management.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 26

If you are interested in system and device interaction, read manufacturing
management (the section on device interaction) and accounting payment (the
section on authorization-system interaction).

If you are interested in process, read chapter 1, scan chapters 1-5 and then
study chapter 6.

1.10 Summary
This chapter introduced enterprise-component models in color.

We are developing enterprise-model components and a process for building,
applying, and adapting those components. Along the way, we've discovered that
encoding added layers of information (roles, moment-intervals, things, and
descriptions) was an essential ingredient for both building and reading component
models; we found that color was especially suitable for adding those layers of
information.

Component modeling with color is so effective that we expect that we will never
again return to the monotonous flatland of monochrome modeling.

So get a set of four-color Post-it® Notes and try this out for yourself. Take an
existing model you are working on—or start with a new one, if you wish. Add
"stickers" for the moment-intervals (pink), the parties and roles (yellow), the things
(green), and the descriptions (blue). Then stand back and check it out. Discuss it
with a colleague. Walk through it with a domain expert.

Or, if you already have a large model, get a set of color highlighting pens (pink,
yellow, green, and blue) and highlight the class names in your model. This is
another good way to get started.

References
Color and Visualization

[Chijiiwa87] Chijiiwa, Hideaki, Color Harmony. Rockport Publishers,
1987.

[Gardner83] Gardner, Howard, Frames of Mind: The Theory of Multiple
Intelligences. Basic Books, New York, 1983.

The Elements of Color. Van Nostrand Reinhold, 115 Fifth Avenue, New
York, 1970.

Root-Bernstein, Robert Scott, "Visual Thinking: The Art of Imagining
Reality." Transactions of the American Philosophical Society, Volume 75,
1985.

[Tufte90] Tufte, Edward R., Envisioning Information. Graphics Press,
Cheshire, Connecticut, 1990.

Walker, Morton, The Power of Color. Avery, 1991.
[Wilcox94] Wilcox, Michael, Blue and Yellow Don't Make Green, Revised

Edition. North Light Books, Cincinnati, 1994.
Modeling

Booch, Grady with James Rumbaugh and Ivar Jacobson, UML User
Guide. Addison Wesley, 1999.

[Coad97a] Coad, "Boundary; Colors; Timeline; Status". The Coad Letter.
Object International (www.oi.com), September 30, 1997.

Java Modeling in Color with UML
Chapter 1: Introduction

Page 27

[Coad97b] Coad, Peter, "How to Build Better Object Models" Tutorial.
OOPSLA, Atlanta, October 1997.

[Coad92] Coad, Peter and Mayfield, Mark, "Object-Oriented Patterns".
Communications of the ACM. September 1992.

[Coad95-97] Coad, Peter with Mark Mayfield and David North, Object
Models: Strategies, Patterns, and Applications. Second Edition. Prentice
Hall, 1997.

Curran, Thomas and Gerhard Keller with Andrew Ladd, SAP R/3
Business Blueprint. Prentice Hall, 1998.

Fowler, Martin, Analysis Patterns. Addison Wesley, 1996.
Fowler, Martin, with Kendall Scott, UML Distilled. Addison Wesley, 1997.
Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides,

Design Patterns. Addison Wesley, 1995.
Words

[Haykawa68] Hayakawa, S.I., Editor, Use the Right Word. Now published
under the title Choose the Right Word. Reader's Digest, Pleasantville,
1968.

[Webster78] Webster's New Twentieth Century Dictionary. Collins World,
1978.

